Create prior specifications for cumulative link models in clmstan.
Default priors:
Regression coefficients (beta):
normal(0, 2.5)Cutpoints (c):
normal(0, 10)for flexible,normal(0, 5)for symmetricInterval (d):
gamma(2, 0.5)for equidistant threshold
Link parameter priors (when estimated):
| Link | Parameter | Default Prior |
| tlink | df | gamma(2, 0.1) |
| aranda_ordaz | lambda | gamma(0.5, 0.5) |
| gev | xi | normal(0, 2) |
| sp | r | gamma(0.5, 0.5) |
| log_gamma | lambda | normal(0, 1) |
| aep | theta1, theta2 | gamma(2, 1) |
Usage
clm_prior(
beta_sd = NULL,
c_sd = NULL,
c1_mu = NULL,
c1_sd = NULL,
d_alpha = NULL,
d_beta = NULL,
cpos_sd = NULL,
df_alpha = NULL,
df_beta = NULL,
lambda_ao_alpha = NULL,
lambda_ao_beta = NULL,
lambda_lg_mu = NULL,
lambda_lg_sd = NULL,
xi_mu = NULL,
xi_sd = NULL,
r_alpha = NULL,
r_beta = NULL,
theta1_alpha = NULL,
theta1_beta = NULL,
theta2_alpha = NULL,
theta2_beta = NULL
)Arguments
- beta_sd
SD for normal prior on regression coefficients. Default: 2.5 (weakly informative)
- c_sd
SD for normal prior on cutpoints (flexible threshold). Default: 10
- c1_mu
Mean for normal prior on first cutpoint (equidistant threshold). Default: 0
- c1_sd
SD for normal prior on first cutpoint (equidistant threshold). Default: 10
- d_alpha
Gamma shape for interval d (equidistant threshold). Default: 2
- d_beta
Gamma rate for interval d (equidistant threshold). Default: 0.5
- cpos_sd
SD for half-normal prior on positive cutpoints (symmetric threshold). Default: 5
- df_alpha
Gamma shape for tlink df. Default: 2
- df_beta
Gamma rate for tlink df. Default: 0.1
- lambda_ao_alpha
Gamma shape for aranda_ordaz lambda. Default: 0.5
- lambda_ao_beta
Gamma rate for aranda_ordaz lambda. Default: 0.5
- lambda_lg_mu
Normal mean for log_gamma lambda. Default: 0
- lambda_lg_sd
Normal SD for log_gamma lambda. Default: 1
- xi_mu
Normal mean for GEV xi. Default: 0
- xi_sd
Normal SD for GEV xi. Default: 2
- r_alpha
Gamma shape for SP r. Default: 0.5
- r_beta
Gamma rate for SP r. Default: 0.5
- theta1_alpha
Gamma shape for AEP theta1. Default: 2
- theta1_beta
Gamma rate for AEP theta1. Default: 1
- theta2_alpha
Gamma shape for AEP theta2. Default: 2
- theta2_beta
Gamma rate for AEP theta2. Default: 1
Examples
# Create a prior object (does not require Stan)
my_prior <- clm_prior(beta_sd = 2, c_sd = 5)
print(my_prior)
#> clmstan prior specification:
#> Regression coefficients (beta):
#> beta_sd = 2
#> Cutpoints (flexible):
#> c_sd = 5
if (FALSE) { # \dontrun{
# Examples below require CmdStan and compiled Stan models
data(wine, package = "ordinal")
# Default priors (no customization needed)
fit <- clm_stan(rating ~ temp, data = wine,
chains = 2, iter = 500, warmup = 250, refresh = 0)
# Custom prior for regression coefficients
fit2 <- clm_stan(rating ~ temp, data = wine,
prior = clm_prior(beta_sd = 1),
chains = 2, iter = 500, warmup = 250, refresh = 0)
} # }