clmstan supports the following link functions for cumulative link models:
Standard links (no additional parameters):
"logit"- Logistic (proportional odds model)"probit"- Normal (latent variable interpretation)"cloglog"- Complementary log-log (proportional hazards)"loglog"- Log-log (Gumbel minimum)"cauchit"- Cauchy (heavy tails)
Flexible links (with additional parameters):
"tlink"- Student-t (df > 0)df = Inf: equals probit
df < 3: increasingly heavy tails; df > 30 is nearly normal
"aranda_ordaz"- Aranda-Ordaz asymmetric (lambda > 0)lambda = 1: equals logit
lambda -> 0: approaches cloglog
"gev"- Generalized extreme value (shape parameter xi)xi = 0: Gumbel (equals loglog)
xi < 0: Weibull (short tail)
xi > 0: Frechet (heavy tail)
"sp"- Symmetric power (r > 0, base distribution)r = 1: equals base distribution
0 < r < 1: positively skewed
r > 1: negatively skewed
"log_gamma"- Log-gamma (lambda)lambda = 0: equals probit
lambda > 0 or < 0: asymmetric
"aep"- Asymmetric exponential power (theta1 > 0, theta2 > 0)alpha = 0.5 fixed for identifiability
theta1 = theta2: symmetric distribution
theta = 2: Gaussian kernel (but NOT equal to probit due to scaling)
theta < 2: heavy tails (leptokurtic)
theta > 2: light tails (platykurtic)
Link Parameter Specification
Flexible link parameters can be either fixed or estimated (inferred).
Fixed parameters: Specify a numeric value
clm_stan(y ~ x, link = "tlink", link_param = list(df = 8))
clm_stan(y ~ x, link = "gev", link_param = list(xi = 0)) # equals loglog
clm_stan(y ~ x, link = "aep", link_param = list(theta1 = 2, theta2 = 2)) # symmetricEstimated parameters: Use "estimate" (with default prior)
clm_stan(y ~ x, link = "tlink", link_param = list(df = "estimate"))
clm_stan(y ~ x, link = "gev", link_param = list(xi = "estimate"))Custom priors: Combine "estimate" with prior argument
Default Priors for Link Parameters
When using "estimate", the following default priors are used:
| Link | Parameter | Default Prior | Notes |
| tlink | df | gamma(2, 0.1) | Mode around 10, allows heavy tails |
| aranda_ordaz | lambda | gamma(0.5, 0.5) | Centered near 1 (logit) |
| gev | xi | normal(0, 2) | Weakly informative, Wang & Dey (2011) |
| sp | r | gamma(0.5, 0.5) | Centered near 1 (base distribution) |
| log_gamma | lambda | normal(0, 1) | Centered at 0 (probit) |
| aep | theta1 | gamma(2, 1) | Mode at 1, symmetric at theta1=theta2 |
| aep | theta2 | gamma(2, 1) | Mode at 1, symmetric at theta1=theta2 |
SP Link Details (Li et al., 2019)
The Symmetric Power link uses a symmetric base distribution F_0,
specified via the base argument. Supported bases:
base = "logit": Logistic base (default)base = "probit": Normal basebase = "cauchit": Cauchy basebase = "tlink": Student-t base (requires df)
Note: Li et al. (2019) define F_0 as a CDF "whose corresponding PDF is symmetric about 0".