Specify prior distributions for model parameters using distribution functions.
Arguments
- prior
A distribution object created by
normal(),gamma(),student_t(), orcauchy().- class
The parameter class. Valid classes are:
"b": Regression coefficients (beta)"Intercept": Cutpoints/thresholds (flexible)"c1": First cutpoint (equidistant)"d": Threshold interval (equidistant)"cpos": Positive cutpoints (symmetric)"df": Degrees of freedom (tlink)"lambda_ao": Lambda parameter (aranda_ordaz)"lambda_lg": Lambda parameter (log_gamma)"xi": Xi parameter (gev)"r": R parameter (sp)"theta1","theta2": Theta parameters (aep)
- coef
Optional coefficient name (for future extension).
Examples
# Specify a normal prior for regression coefficients
prior(normal(0, 2.5), class = "b")
#> Prior: normal(0, 2.5)
#> Class: b
# Specify a gamma prior for degrees of freedom
prior(gamma(2, 0.1), class = "df")
#> Prior: gamma(2, 0.1)
#> Class: df
# Combine multiple priors
c(
prior(normal(0, 2.5), class = "b"),
prior(normal(0, 10), class = "Intercept")
)
#> Prior specifications:
#> 1. b: normal(0, 2.5)
#> 2. Intercept: normal(0, 10)